True Approximations for k-Center with Covering Constraints

Georg Anegg, Haris Angelidakis, Adam Kurpisz, Rico Zenklusen IFOR, ETH Zürich

Motivation

- ► Surge of interest in fairness-inspired *k*-center versions
- ► Fairness conditions naturally lead to covering constraints
- Current techniques only give pseudo-approximations

How to deal with covering constraints in *k*-center problems?

Recap: The *k*-Center problem (classical version)

Task: cover all points of a metric space with

Recap: round-or-cut (classical framework we build upon)

Rounding technique based on Ellip-

erc

k balls of smallest possible radius

- **2**-approximation can be achieved by:
- Pick arbitrary point

ETHzürich

- Remove ball of radius 2r
- Repeat

soid Algorithm:

Find such that we can
either round solution (if in)
or separate from target polytope

Then use this in Ellipsoid iterations

γ -Colorful *k*-Center Problem (γ CkC), introduced by [1]: an illustrative example for our approach

- ► Input: metric space X, color classes $X_1, \ldots, X_{\gamma} \subseteq X$ with covering requirements m_1, \ldots, m_{γ}
- Output: centers $C \subseteq X$ with |C| = k and $|\bigcup_{c \in C} B(c, r) \cap X_{\ell}| \ge m_{\ell}$
- ► Goal: minimize *r*

Prior Work

- $(17 + \epsilon)$ -approximation for plane [1]
- ▶ 2-pseudo-approximation opening $k + \gamma 1$ centers [1]

Our Results for (Fair) γ CkC

► 4-approximation for Fair γCkC for any metric for $\gamma = O(1)$ (Fair γCkC is a probabilistic generalization of γCkC by [2])

- **2**-pseudo-approximation for Fair γ **CkC** [2]
- Round-or-cut first used by [3] in this context

► γ CkC is inapproximable for unbounded γ if $P \neq NP$, and for $\gamma = \omega(\log |X|)$ under *ETH*

Algorithm: Illustration for γCkC for $\gamma = 2$

Further Result	Open Questions	References
5-approximation for supplier version	 ▶ Best guarantee? ▶ Knapsack/Matroid γCkC? 	 S. Bandyapadhyay, T. Inamdar, S. Pai, and K. R. Varadarajan, "A constant approximation for Colorful <i>k</i>-Center", <i>ESA</i>, 2019. D. G. Harris, T. Pensyl, A. Srinivasan, and K. Trinh, "A lottery model for center-type problems with outliers", <i>ACM TALG</i>, 2019. D. Chakrabarty and M. Negahbani, "Generalized center problems with outliers", <i>ACM TALG</i>, 2019.