True Approximations for \boldsymbol{k}-Center with Covering Constraints

Georg Anegg, Haris Angelidakis, Adam Kurpisz, Rico Zenklusen

Motivation

- Surge of interest in fairness-inspired \boldsymbol{k}-center versions
- Fairness conditions naturally lead to covering constraints
- Current techniques only give pseudo-approximations

How to deal with covering constraints in \boldsymbol{k}-center problems?

Recap: The k-Center problem (classical version)

Task: cover all points of a metric space with \boldsymbol{k} balls of smallest possible radius
2-approximation can be achieved by:

- Pick arbitrary point
- Remove ball of radius $2 r$
- Repeat

Recap: round-or-cut (classical framework we build upon)

Rounding technique based on Ellipsoid Algorithm:
Find such that we can

- either round solution (if in)
- or separate from target polytope

Then use this in Ellipsoid iterations

γ-Coloriul k-Center Problem ($\gamma \mathrm{CkC}$), introduced by [1]: an illustrative example for our approach

- Input: metric space \boldsymbol{X}, color classes $\boldsymbol{X}_{1}, \ldots, \boldsymbol{X}_{\gamma} \subseteq \boldsymbol{X}$ with covering requirements $\boldsymbol{m}_{1}, \ldots, \boldsymbol{m}_{\gamma}$
- Output: centers $\boldsymbol{C} \subseteq \boldsymbol{X}$ with
$|C|=k$ and $\left|\cup_{c \in C} B(c, r) \cap X_{\ell}\right| \geq m_{\ell}$
- Goal: minimize r

Prior Work

- $(17+\epsilon)$-approximation for plane [1]
- 2-pseudo-approximation opening $\boldsymbol{k}+\gamma-\mathbf{1}$ centers [1]
- 2-pseudo-approximation for Fair $\gamma \mathrm{CkC}$ [2]
- Round-or-cut first used by [3] in this context

Our Results for (Fair) γ CkC

- 4-approximation for Fair $\gamma \mathbf{C k C}$ for any metric for $\gamma=\mathbf{O}(1)$ (Fair $\gamma \mathbf{C k C}$ is a probabilistic generalization of $\gamma \mathbf{C k C}$ by [2])
- $\gamma \mathbf{C k C}$ is inapproximable for unbounded γ if $\boldsymbol{P} \neq \boldsymbol{N P}$, and for $\gamma=\omega(\log |\boldsymbol{X}|)$ under ETH

Algorithm: Illustration for $\gamma \mathrm{CkC}$ for $\gamma=2$

Further Result

- 5-approximation for supplier version

Open Questions

Best guarantee?

- Knapsack/Matroid $\gamma \mathbf{C k C}$?

References

[1] S. Bandyapadhyay, T. Inamdar, S. Pai, and K. R. Varadarajan, "A constant approximation for Colorful \boldsymbol{k}-Center", ESA, 2019. [2] D. G. Harris, T. Pensyl, A. Srinivasan, and K. Trinh, "A lottery model for center-type problems with outliers", ACM TALG, 2019. [3] D. Chakrabarty and M. Negahbani, "Generalized center problems with outliers", ACM TALG, 2019.

